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Abstract We have previously reported the detection of cho-
lesteryl ester hydroperoxides, consisting mainly of choles-
teryl linoleate hydroperoxides (Ch18:2-OOH), at n

 

m

 

 levels in
plasma from healthy humans (

 

Y. Yamamoto and E. Niki,

 

1989. 

 

Biochem. Biophys. Res. Commun.

 

 

 

165:

 

 988–993). To elu-
cidate their production mechanism 

 

in vivo

 

, we examined the
distribution of Ch18:2-O(O)H regioisomers in blood plasma
from nine healthy young subjects using a sequential method
consisting of methanol/hexane extraction in the presence
of antioxidant, reductant, and internal standard, solid
phase extraction to remove unoxidized cholesteryl linoleate,
purification by reversed-phase high-performance liquid
chromatography (HPLC), and detection by normal phase
HPLC. Furthermore, we confirm that little artifactual oxi-
dation of cholesteryl linoleate occurred during analytical
procedures indicated by the absence of oxidation products
of cholesteryl 11Z,14Z-eicosadienoate (Ch20:2) when pro-
vided as an exogenous substrate to the experimental proce-
dure. We detected n

 

m

 

 levels of all free radical-mediated oxi-
dation products, 13ZE-, 13EE-, 9-EZ-, and 9-EE-forms of
Ch18:2-O(O)H, in blood plasma, whereas the 13ZE-isomer
resulting from enzymatic 15-lipoxygenase oxidation was not
evident as a major product.  These results indicate that
free radical chain oxidation of lipids occurs even in healthy
young individuals.

 

—Mashima, R., K. Onodera, and Y. Yama-
moto.
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Lipid hydroperoxides are the primary stable products
of lipid peroxidation. Owing to the importance of this
process in pathophysiological conditions, we have devel-
oped an ultrasensitive method for the detection of lipid
hydroperoxides (1). Using this method, we found about 3
n

 

m

 

 cholesteryl ester hydroperoxides (CE-OOH), mostly
cholesteryl linoleate hydroperoxides (Ch18:2-OOH), in

 

blood plasma obtained from healthy individuals (2). It
was also an interesting observation that the plasma levels
of CE-OOH and the ratios of CE-OOH to cholesteryl
esters (CE) increase significantly in the order of humans

 

, 

 

Sprague-Dawley rats 

 

,

 

 Nagase analbuminemic rats (3),
and this order may be generally correlated to the compar-
ative life spans of humans and rats, and is consistent with
the observation that Nagase analbuminemic rats are more
sensitive than Sprague-Dawley rats to carcinogens.

Cholesteryl linoleate (Ch18:2) is a major cholesteryl
ester in human blood plasma and 

 

Fig. 1

 

 provides chemi-
cal structures of primary autoxidation products: cholesteryl
13-hydroperoxy-9Z,11E-octadecadienoate (13ZE-Ch18:2-
OOH), cholesteryl 13-hydroperoxy-9E,11E-octadecadienoate
(13EE-Ch18:2-OOH), cholesteryl 9-hydroperoxy-10E,12Z-
octadecadienoate (9EZ-Ch18:2-OOH), and cholesteryl 9-
hydroperoxy-10E,12E-octadecadienoate (9EE-Ch18:2-OOH).
As each isomer has two stereoisomers (S and R forms),
there are eight isomeric products formed by Ch18:2 oxi-
dation. Autoxidation proceeds by a free radical chain
mechanism as shown in Fig. 1. First, hydrogen atom ab-
straction from C-11 of the linoleate side chain leads to the
pentadienyl radical (Ch18:2

 

.

 

) and addition of oxygen to
Ch18:2

 

.

 

 yields 13ZE- and 9EZ-peroxyl radical (Ch18:2-
OO

 

.

 

). Porter et al. (4) and Kenar et al. (5) demonstrated

 

Abbreviations: AMVN, 2,2

 

9

 

-azobis(2,4-dimethylvaleronitrile); BHT,
2,6-di-

 

tert

 

-butyl-4-methylphenol; CE-O(O)H, cholesteryl ester hydro
(pero)xides; CE, cholesteryl esters; Ch18:2, cholesteryl linoleate; 13ZE-
Ch18:2-O(O)H, cholesteryl 13-hydro(pero)xy-9Z,11E-octadecadienoate;
13EE-Ch18:2-O(O)H, cholesteryl 13-hydro(pero)xy-9E,11E-octadecadi-
enoate; 9EZ-Ch18:2-O(O)H, cholesteryl 9-hydro(pero)xy-10E,12Z-octa-
decadienoate; 9EE-Ch18:2-O(O)H, cholesteryl 9-hydro(pero)xy-10E,12E-
octadecadienoate; Ch18:2-O(O)H, Ch18:2 hydro(pero)xides; Ch20:2,
cholesteryl 11Z,14Z-eicosadienoate; Ch20:2-O(O)H, Ch20:2 hydro(pero)
xides; Ch18:3, cholesteryl 6Z,9Z,12Z-octadecatrienoate; Ch18:3-O(O)H,
Ch18:3 hydro(pero)xides; 6EZZ-Ch18:3-OH, cholesteryl 6-hydroxy-7E,9Z,
12Z-octadecatrienoate; HPLC, high performance liquid chromatography.
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the conversion of 13ZE-peroxyl radical to 9EE-peroxyl
radical through the rotation of the C9–C10 bond, removal
of oxygen from Ch18:2-OO

 

.

 

, and addition of oxygen to
Ch18:2

 

.

 

 to give the 9EE peroxyl radical. Likewise, transforma-
tion of the 9EZ peroxyl radical to the 13EE peroxyl radical
proceeds by a similar manner. The ratio of (13ZE-Ch18:2-
OOH 

 

1

 

 9EZ-Ch18:2-OOH) to (13EE-Ch18:2-OOH 

 

1

 

9EE-Ch18:2-OOH) is therefore a good indicator for the
presence of active hydrogen donors such as antioxidants
and polyunsaturated lipids as hydrogen donation dimin-
ishes the yields of EE forms during autoxidation.

On the other hand, enzymatic oxidation of Ch18:2 with
15-lipoxygenase gives predominantly only one stereospe-
cific product (S form of 13ZE-Ch18:2-OOH) (6). It has
been shown that 15-lipoxygenase can also oxidize Ch18:2
in low density lipoprotein to give the S form of 13ZE-
Ch18:2-OOH as the major product (7). These results indi-
cate that the site and the orientation of oxygen addition
are restricted by enzymatic oxidation and that the Ch18:2-
OO

 

.

 

 intermediate produced during enzymatic oxidation
is not free to stereo-isomerization.

To elucidate the mechanism of Ch18:2 oxidation in
vivo, we have developed a method to determine the regio-
isomeric composition of Ch18:2-O(O)H. We analyzed for
both Ch18:2-OOH and its hydroxide (Ch18:2-OH) be-
cause apolipoproteins A and B-100 (8–10) in human
plasma can reduce Ch18:2-OOH to Ch18:2-OH. We also
demonstrate that little artifactual oxidation occurs during
our analytical procedure by using cholesteryl 11Z,14Z-

eicosadienoate (Ch20:2) as an exogenous probe; Ch20:2
is not present in human plasma and the oxidizabilities for
both substrates are identical as described in this report.

MATERIALS AND METHODS

 

Reagents

 

Ch18:2 was purchased from Sigma (Tokyo, Japan). Ch20:2 and
cholesteryl 6Z,9Z,12Z-octadecatrienoate (Ch18:3) were obtained
from Nu-Chek-Prep (Elysian, MN). Other reagents were of the
highest grade available. 2,2

 

9

 

-azobis(2,4-dimethylvaleronitrile)
(AMVN) was obtained from Wako (Osaka, Japan).

To remove oxidation products, Ch18:2 and Ch20:2 were puri-
fied on a semipreparative octadecylsilyl column (Superiorex ODS,
20 

 

3

 

 250 mm, Shiseido, Tokyo) using methanol–2-propanol 25:75
(v/v) as the mobile phase delivered at a flow rate of 8.0 ml/min
(11). Then, Ch18:2-OOH was prepared by spontaneous autoxi-
dation of hydroperoxide-free Ch18:2 (80 mol) in 1 ml of hexane
at room temperature for 10 days. Addition of triphenylphos-
phine reduced Ch18:2-OOH to Ch18:2-OH. After exchanging
the solvent to the above mobile phase, Ch18:2-OOH and Ch18:2-
OH were fractionated using the same HPLC conditions
described above. To separate the four regioisomers, the Ch18:2-
OOH and Ch18:2-OH fractions were injected onto a semiprepar-
ative silica gel column (Supelcosil LC-Si, 10 

 

3

 

 250 mm, Supelco,
Tokyo) using hexane–2-propanol 1000:5 (v/v) as the mobile
phase (5.0 ml/min) (5). Ch20:2 hydro(pero)xides (Ch20:2-
O(O)H) were prepared similarly. Cholesteryl 15-hydroxy-11Z,13E-
eicosadienoate (15ZE-Ch20:2-OH), cholesteryl 15-hydroxy-11E,
13E-eicosadienoate (15EE-Ch20:2-OH), cholesteryl 11-hydroxy-

Fig. 1. Products and reaction mechanism of the autoxidation of cholesteryl linoleate (Ch18:2).
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12E,14Z-eicosadienoate (11EZ-Ch20:2-OH), and cholesteryl 11-
hydroxy-12E,14E-eicosadienoate (11EE-Ch20:2-OH) were sepa-
rated by using an identical, normal phase HPLC procedure.

Ch18:3 was oxidized in hexane in the presence of 5 mole % of

 

a

 

-tocopherol at room temperature for 3 days. 

 

a

 

-Tocopherol was
added to decrease the formation of the ZEE isomers of Ch18:3
hydroperoxides (Ch18:3-OOH) and to accelerate autoxidation
(12). Amongst the four ZZE isomers of Ch18:3 hydroxides (Ch18:3-
OH), cholesteryl 6-hydroxy-7E,9Z,12Z-octadecatrienoate (6EZZ-
Ch18:3-OH) was selected as an internal standard in the following
experiments. The HPLC elution profiles for the Ch18:2-O(O)H,
Ch20:2-O(O)H, and Ch18:3-O(O)H isomers and characteriza-
tion by gas chromatography/mass spectrometry have been de-
termined and will be published elsewhere. Concentrations
were determined photometrically by absorbance at 234 nm using
the molar absorption coefficient for a conjugated diene, 28,000
cm

 

2

 

1

 

M

 

2

 

1

 

 (13).

 

Oxidation of Ch18:2 and Ch20:2 in 2-propanol

 

To compare the oxidizability, we initiated the oxidation of
Ch18:2 and Ch20:2 (1 m

 

m

 

 each) with 100 m

 

m

 

 AMVN in 2-propanol
at 37

 

8

 

C under aerobic conditions.
Aliquots (5 

 

m

 

l) from the reaction were injected onto an octade-
cylsilyl column (Supelcosil LC-18, 4.6 

 

3

 

 250 mm, Supelco) to deter-
mine rates of Ch18:2-OOH and Ch20:2-OOH production. Metha-
nol–2-propanol 1:1 (v/v) was used as the mobile phase delivered at
a flow rate of 1.0 ml/min and peaks were detected at 234 nm.

 

Collection of blood plasma

 

Blood was collected from nine fasted healthy volunteers (non-
smoking Japanese males, 21–29 years old) and placed in a heparin-
containing vacutainer. Plasma was separated from blood by centrif-
ugation at 1500 

 

g

 

 for 10 min and was stored at 

 

2

 

80

 

8

 

C until analysis.
This study was approved by the Ethics Committee of the Re-

search Center for Advanced Science and Technology, University
of Tokyo.

 

Analyses of Ch18:2-O(O)H regioisomers in human plasma

 

Analytical procedures are outlined in 

 

Fig. 2.

 

 Briefly, 10 ml of
methanol containing 325 

 

m

 

m

 

 2,6-di-

 

tert

 

-butyl-4-methylphenol
(BHT), 70 ml of hexane containing 1.4 

 

m

 

m

 

 triphenylphosphine,
and 5 

 

m

 

l of a hexane solution of 10.9 

 

m

 

m

 

 6EZZ-Ch18:3-OH (corre-
sponding to 21.8 n

 

m

 

 in plasma) were added to 2.5 ml of heparin-
ized plasma and were mixed vigorously for 5 min. After centrifuga-
tion at 1500 

 

g

 

 for 1 min, 60 ml of the hexane phase was collected
and the solvent was removed on a rotary vacuum evaporator.

The dry residue was dissolved in 3 ml of hexane–ethyl acetate
50:1 (v/v) containing 10 

 

m

 

m

 

 BHT and was applied to a solid
phase extraction column constructed of glass (inner diameter 

 

5

 

25 mm) having a 60 ml volume and containing 2.5 g of silica with
an aminopropylsilyl surface-bonded phase (LC-NH

 

2

 

, Supelco).
The column was prewashed with 100 ml of the above hexane–
ethyl acetate before applying 3 ml of the reconstituted extract
was added. After washing with 50 ml of the above hexane–ethyl
acetate mixture, Ch18:2-OH was eluted with 50 ml of hexane–
ethyl acetate 9:1 (v/v) containing 10 

 

m

 

m

 

 BHT.
After removing eluted solvent on a rotary vacuum evaporator,

the collected Ch18:2-OH was dissolved in 500 

 

m

 

l of methanol–2-
propanol 9:1 (v/v) and an aliquot (350 

 

m

 

l) was injected onto an
octyl column (Capcell Pak C8, 10 

 

3

 

 250 mm, Shiseido) to re-
move contaminants; methanol–2-propanol 9:1 (v/v) was used as
the mobile phase delivered at a flow rate of 4.0 ml/min with de-
tection at 234 nm. The fraction containing Ch18:2-OH and
6EZZ-Ch18:3-OH was collected.

After removing the solvent and redissolving the residue in 500

 

m

 

l of hexane–2-propanol 1000:5 (v/v), an aliquot (100 

 

m

 

l: corre-

sponding to 300 

 

m

 

l of plasma) was injected onto a silica gel col-
umn (Supelcosil LC-Si, 4.6 

 

3

 

 250 mm, Supelco) to determine
the regioisomeric composition of Ch18:2-OH using hexane–2-
propanol 1000:5 (v/v) as the mobile phase delivered at a flow
rate of 1.0 ml/min with detection at 234 nm.

For a control comparison, distilled water was substituted for
plasma and treated exactly as described above.

 

Assessment of artifactual oxidation during
analytical procedure

 

In addition to 10 ml of methanol containing 325 

 

m

 

m

 

 BHT, 70
ml of hexane containing 1.4 

 

m

 

m

 

 triphenylphosphine, and 5 

 

m

 

l of
a hexane solution of 10.9 

 

m

 

m

 

 6EZZ-Ch18:3-OH, 1 ml of a hexane
solution of 4 m

 

m

 

 freshly purified, oxidation products-free Ch20:2
(corresponding to 1.6 m

 

m

 

 in plasma) were added to 2.5 ml of hu-
man plasma and identical analytical procedures were used with
the exception that the fraction containing Ch20:2-OH was col-
lected on the purification step using a reversed-phase octyl column.
Regioisomers of Ch20:2-OH were then analyzed by the same normal
phase HPLC method as described above. Separately, 10 

 

m

 

l of a
hexane solution of 3.1 

 

m

 

m

 

 Ch20:2-OH (corresponding to 12.4 

 

m

 

m

 

in plasma) was added instead of hexane solution of Ch20:2 and
the sample was similarly analyzed to demonstrate that n

 

m

 

 levels
of added Ch20:2-OH can be measured by our method.

 

CE-OOH and CE assay

 

The levels of CE-OOH, 

 

a

 

-tocopherol (VE), free cholesterol
(FC), and CE in human plasma were determined by a method
previously described (1, 2). We used Ch18:2-OOH as a standard
instead of methyl linoleate hydroperoxide (2).

 

RESULTS AND DISCUSSION

 

Procedure for the analysis of regioisomers 
of Ch18:2-O(O)H

 

Our analytical procedure (Fig. 2) consisted of methanol–
hexane extraction in the presence of antioxidant (BHT),

Fig. 2. Analytical procedure for the measurement of regioiso-
mers of cholesterol linoleate hydro(pero)xides.
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reductant (triphenylphosphine), and internal standard,
solid phase extraction, purification by reversed-phase
HPLC, and analysis by normal phase HPLC separation.
Antioxidant (BHT) was always present until unoxidized
Ch18:2 was removed by solid phase extraction to minimize
autoxidation of Ch18:2 during sample treatment. Triphe-
nylphosphine was added to reduce Ch18:2-OOH to Ch18:2-
OH as normal phase HPLC (5) separates 13EZ-, 13EE-, 9ZE-,
and 9EE-forms of Ch18:2-OH, but not 9EZ-Ch18:2-OOH
and 9EE-Ch18:2-OOH. We selected 6EZZ-Ch18:3-OH as
an internal standard because it coelutes with Ch18:2-OH
on reversed-phase HPLC at the purification step and
elutes separately from the regioisomers of Ch18:2-OH on
normal phase analysis. Solid phase extraction was used
to separate Ch18:2-OH from unoxidized, endogenous
Ch18:2 to prevent artifactual substrate oxidation. It was
necessary to remove interfering impurities by reversed-
phase HPLC.

 

Co-oxidation of Ch18:2 and Ch20:2
Figure 3

 

 shows that oxidation of Ch18:2 and Ch20:2 (1
m

 

m

 

 each) initiated with 100 m

 

m

 

 AMVN at 37

 

8

 

C under aer-
obic conditions affords near identical rates in the produc-
tion of 18:2-OOH and Ch20:2-OOH, respectively. Both
substrates are similar having two reactive bisallylic hydro-
gens, thus providing an equivalent degree of oxidizability.

 

Artifactual oxidation

 

To assess artifactual oxidation during sample processing
and analysis, purified Ch20:2 was added to the plasma ex-
tract as an internal control and subjected to identical pro-
cedures. Ch20:2 was selected as the oxidation probe be-
cause Ch20:2 is not normally present in human plasma
and the oxidizabilities of Ch18:2 and Ch20:2 are demon-
strated to be identical (above). As the plasma levels of
Ch18:2 in our volunteers was 1.4 m

 

m

 

 (data not shown), we
added an equivalent concentration of Ch20:2 (1.6 m

 

m

 

) to
the methanol–hexane extract obtained from 2.5 ml of
plasma. Separately, Ch20:2-OH (31.1 pmol: correspond-
ing 12.4 n

 

m

 

 in plasma) was added to the methanol/hex-

ane extract obtained from 2.5 ml of plasma. Both extracts
were taken to the solid phase extraction stage to remove
unoxidized Ch18:2 and Ch20:2.

Next, we moved to a purification step using reversed-
phase HPLC. Fraction 1 which may contain Ch20:2-OH
was collected from the extract of human plasma with added
Ch20:2 (

 

Fig. 4A

 

). Fraction 2 containing Ch20:2-OH was
collected from the extract of human plasma with added
Ch20:2-OH (Fig. 4B). Finally, we analyzed fraction 1 using
normal phase HPLC and could not detect any significant
peaks of four regioisomers (15ZE-, 15EE-, 11EZ-, and
11EE-Ch20:2-OH) (

 

Fig. 5A

 

). On the other hand, four re-
gioisomers were detected in the analysis of fraction 2 ob-
tained from the extract of plasma spiked with prepared
Ch20:2-OH isomers (Fig. 5B), demonstrating that low n

 

m

 

levels of CE-OH in plasma can be measured by our method.
From these data we concluded that artifactual oxidation
products of Ch18:2 are not formed during our analytical
treatment.

 

Regioisomers of Ch18:2-O(O)H in human plasma

 

We applied our method to the analyses of human
plasma using distilled water as a plasma control blank. De-
tailed analytical procedurs are described in Materials and
Methods section. 

 

Figure 6

 

 shows the collected fractions at
the purification step using reversed-phase HPLC separa-
tion where Ch18:2-OH and the internal standard (6EZZ-
Ch18:3-OH: corresponding to 21.8 

 

m

 

m

 

 in plasma) elute
between 7.5–9 min. Fractions 3 and 4 were collected from
the extracts of plasma from a young healthy individual
and control samples, respectively. The normal phase
HPLC chromatogram of fraction 3 (

 

Fig. 7A

 

) shows that

Fig. 3. Formation of Ch18:2-OOH and Ch20:2-OOH during the
oxidation of Ch18:2 and Ch20:2 (1 mm each) initiated with 100 mm
AMVN in 2-propanol at 378C under aerobic conditions.

Fig. 4. (A) Collection of fraction 1 which may contain Ch20:2-OH
from the extract of human plasma with added Ch20:2 (correspond-
ing to 1.6 mm in plasma) and (B) collection of fraction 2 containing
Ch20:2-OH from the extract of human plasma with added Ch20:2-
OH (corresponding to 12.4 nm in plasma). Fractionation indicated
by the collection brackets was achieved on an octyl column (10 3
250 mm) with methanol–2-propanol 9:1 (v/v) as the mobile phase
(4.0 ml/min). Elution time of Ch20:2-OH is as indicated.
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four regioisomers of Ch18:2-OH are present at low n

 

m

 

 lev-
els in plasma from a healthy human. Identification of
Ch18:2-OH regioisomers was confirmed by spiking of pre-
pared Ch18:2-OH isomers (total 3.8 pmol: corresponding
to 10.9 n

 

m

 

 in plasma) to fraction 3 (Fig. 7B). It is notewor-
thy that there was no significant peak, other than the

internal standard, in the analysis of control fraction 4 ob-
tained from distilled water (Fig. 7C).

Table 1 summarizes the plasma levels of Ch18:2-O(O)H,
CE-OOH, VE, FC, and CE obtained from nine young healthy
volunteers. Recovery of the internal standard was 76% on
an average, indicating that most of plasma Ch18:2-O(O)H
isomers were detected without a significant loss in our as-
say. Plasma samples were repetitively analyzed (n 5 3–6)
and the results were found to be reproducible. All four re-
gioisomers of Ch18:2-O(O)H were always present and the
formation of 13ZE-Ch18:2-O(O)H isomer with contribu-
tion of enzymatic oxidation was not observed as the major
product (Fig. 7A and Table 1). These results offer substan-
tial evidence of free radical-mediated oxidation of lipids
in vivo.

Our conclusion is further verified by the presence of
isoprostanes, nonenzymatic oxidation products of arachi-
donic acid, in plasma and urine from healthy humans
(14–18). Plasma levels of isoprostanes are significantly ele-
vated in smokers (15) and in patients with renal failure
(17) in comparison to suitable controls. It was also found
that urinary isoprostane levels in patients treated with cor-
onary reperfusion via percutaneous transluminal coro-
nary angioplasty were markedly increased from baseline
in the first 6 h returning to preprocedural levels within 24
h (16). We are also planning to apply our method to pa-
tients in pathophysiological distress. Levels of isopros-

Fig. 5. Normal phase HPLC analysis of (A) fraction 1 (Fig. 4A)
and (B) fraction 2 (Fig. 4B) containing Ch20:2-OH. A silica gel col-
umn (4.6 3 250 mm) was used with hexane–2-propanol 1000:5 (v/v)
as the mobile phase (1.0 ml/min). 15ZE, 15EE, 11EZ, and 11EE are
indicated as the four designated regioisomers of Ch20:2-OH.

Fig. 6. (A) Collection of fraction 3 containing Ch18:2-OH and
the internal standard (6EZZ-Ch18:3-OH) from the extract of hu-
man plasma with added 6EZZ-Ch18:3-OH (corresponding to 21.8
nm in plasma) and (B) collection of fraction 4 from the extract of
water control with added 6EZZ-Ch18:3-OH (corresponding to 21.8
nm in water). HPLC conditions were as described in Fig. 4. Frac-
tionation of Ch18:2-OH and 6EZZ-Ch18:3-OH is indicated by the
collection brackets. Their elution times are as indicated.

Fig. 7. Normal phase HPLC analysis of (A) fraction 3 from the
extract of human plasma (Fig. 6A) (B) fraction 3 spiked with 3.8
pmol Ch18:2-OH (corresponding to 10.9 nm in plasma), and (C)
fraction 4 (Fig. 6B) containing 6EZZ-Ch18:3-OH from the water
control. HPLC conditions are as described in Fig. 5. 13ZE, 13EE,
9EZ, and 9EE are the four designated regioisomers of Ch18:2-OH
and their elution times are as indicated.
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tanes in plasma from healthy humans are reported to be
0.1–0.3 nm (15, 17, 18), which are significantly lower than
our plasma Ch18:2-O(O)H levels; 13.6 nm. This is not sur-
prising as CE-OOH is a major product while isoprostanes
are minor products during the copper-induced oxidation
of low density lipoprotein (18).

Plasma Ch18:2-O(O)H levels were always greater than
CE-OOH, indicating the formation of Ch18:2-OH. Plasma
glutathione peroxidase does not reduce CE-OOH (19),
however, it has been recently reported that apolipopro-
teins A-I and A-II can reduce CE-OOH to CE-OH (8, 9).
We found that apolipoprotein B-100 can also reduce CE-
OOH (10).

Plasma CE-OOH levels observed in this study were in
the range of 8.0 6 4.5 nm (mean 6 SD, n 5 9) which is
higher than previously reported values (3.4 6 1.9 nm,
mean 6 SD, n 5 23) (2). We do not know the reason for
this difference but this may be due to the selection and
limitation of our sampling.

As described above, the ratio of ZE/EE is dependent on
the concentration of hydrogen donors in the reaction me-
dia. The ratios observed in the autoxidation of neat dili-
noleoyl phosphatidylcholine and its liposomal dispersion at
378C (without added hydrogen donors) were 1.25 and 1.26,
respectively (4). These numbers are significantly lower than
our observed values (3.4 6 1.5, mean 6 SD), indicating
that active hydrogen donors, such as a-tocopherol, are
present at the location where Ch18:2 is oxidized.

In summary, we demonstrate a reliable method for eval-
uating the regioisomeric composition of Ch18:2-O(O)H
in human plasma without affecting artifactual oxidation
during sample treatment and analyses. We have detected
all four regioisomers of Ch18:2-O(O)H in blood plasma

obtained from healthy young subjects. Furthermore, the
13ZE-Ch18:2-OOH isomer did not predominate as a prod-
uct attributed to an enzymatic oxidation of Ch18:2. Our
data suggest that free radical-mediated oxidation of poly-
unsaturated lipids is an ongoing process within normal
healthy individuals.
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